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Abstract— In this paper, the axial-mode performance features of a non-uniform helix, whose non-uniformity is 
defined by a logarithmic variation of turns spacing along its axis, is presented. Using the classical vector potential 
approach, the paper rigorously formulates radiation-zone field integrals for the antenna in terms of an unknown 
distribution of current. Because the formulation derives from a comprehensive analytical description of this    
‘log-helix’ antenna’s geometry, the unknown current distribution is readily determined with the use of the circuit-
geometric properties of the Method of Moments (MoM). Subsequently, computational results reveal that - as 
obtained with other non-uniform helical antennas - the ‘log-helix’ antenna performs significantly better than the 
corresponding uniform helical antenna of identical axial length. As examples, a 39% increase in power gain was 
recorded for the log-helix over the corresponding uniform helix; whilst a 25% improvement in radiation field’s 
axial ratio was achieved. In addition to far-zone fields and their associated performance metrics, antenna input 
parameters are also computed and discussed in details in this paper. Outcomes of a comparison of the 
performance of the log-helix with that of an exponential helix of about the same axial profile suggest that whereas 
the latter has a better power gain performance, the former is superior in terms of axial ratio bandwidth 
performance.   
 
Keywords— Axial mode; Logarithmic turns spacing; Non-uniform helical antenna.   
     

1. INTRODUCTION  

The helical antenna operated in the axial mode has attracted - over the years - quite a 

few practical applications on account of its inherent properties of circularly polarized 

radiation fields, wide bandwidth, impedance matching capabilities and associated 

broadband features [1, 2].  Many of these applications routinely require better performance 

characteristics than the conventional helical antenna of uniform geometry is ordinarily able 

to provide. As a consequence, a number of schemes have been developed for the purposes of 

attracting the desired performance improvement, particularly gain enhancement and axial 

ratio refinement [3, 4].  One of the earliest of such schemes was reported by Carver [4], who 

located the conventional helical antenna within a conical horn to obtain a gain response, four 

times as large as that of the conventionally oriented helix of the same axial length. Nakano et 

al. reported a significant enhancement of antenna ‘power gain’ through the introduction of a 

parasitic element, wound from a point located diametrically opposite 1½ turns of the driven 

element [3]. On the other hand, King and Wong showed - by experimentally and 

parametrically investigating the response of fixed-length, variable-diameter, variable-pitch 

angle helical antennas - that higher gains can be obtained through a reduction in pitch angle 

[5]. Fu et al. suggested that a linear variation in the helical antenna’s pitch angle can enhance 

circular polarization and improve impedance matching capabilities [6].  
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In recent times, a number of helical antenna performance improvement schemes have 

focused on the introduction of non-uniformities into the antenna geometry. The 

contributions of Chen et al. revealed that exponentially varying the turns spacing of a fixed-

diameter axial mode helical antenna can attract close to a 59% increase in axial ratio 

bandwidth [7]. Kononov and Balanis considered two cases of geometrical non-uniformity 

involving exponential tapering of the antenna structure: i) by allowing the diameter to vary 

linearly with  and ii) with pitch angle kept constant in one case, and allowed to vary in 

another [8]. According to the results reported by them, antenna responses to variations in 

diameter are not ‘well-behaved’ when the pitch is kept constant, but are more systematic, if 

pitch is allowed to vary. Jimisha and Kumar also examined the effects of exponential non-

uniformity on the performance of the axial-mode helical antenna, in this case, with the pitch 

angle characterized by an exponential variation along antenna axis, and through a 

modification of the ‘pitch profile’ with the use of Catmull-Rom spline functions [9]. Due to 

the introduction of this non-uniformity, a significant enhancement of gain was achieved. Of 

particular interest to this paper are the contributions by Elkamchouchi and Salem, who 

investigated the responses of the non-uniform axial mode helical antenna in which non-

uniformities in antenna radius are of the linear, exponential, and logarithmic varieties [1, 10]. 

First, using a NECII modelling of the antenna feed as a ‘delta-gap’ generator without the 

conventional ground plane, they obtained simulation results that indicated that the 

‘exponential-helix’ is the best performing of the three [1]. Then, in a companion publication, 

the authors included a ground plane and obtained a number of interesting simulation 

results, the more notable of which include the observation that whereas the ‘exponential 

helix’ remained the best performing of the three, the ‘linear-helix’ recorded an improved 

gain of 20 dB, which is better than the 17 dB recorded by the exponential helix, in the absence 

of the ground plane [10]. It was also observed by the authors [10] that in the case of the best 

performing ‘exponential helix’, gain - in general - increased with increase in pitch of the 

‘feeding section’, and that when resistively or inductively loaded at its beginning, the best 

performance is recorded at a ‘feeding section pitch’ of 0.14λ.  

Unlike the ‘numerical experiments’ approach that characterized the contributions in [1] 

and [10], a systematic approach was reported  by Dinkic et al. [11], which focused on gain 

performance optimization of the non-uniform helical antenna defined by linear variations of 

antenna geometrical parameters (radius and pitch angle) along the antenna axis. The 

authors, informed by results of previous investigations, selected the helical geometry 

characterized by linearly varying parameters, for gain optimization. And the optimization 

algorithms utilized included a hybrid of the Neider-Mead simplex and particle swarm 

optimization (PSO) routines. Simulation results reported in the paper reveal that when 

located above a ground plane of infinite extent, the non-uniform helical antenna with 

linearly varying geometrical parameters records a gain of 2.5 dB greater than a uniform 

helical antenna of identical axial length. By creating a 2 x 2 array of the optimized non-

uniform antennas, a gain enhancement of about 6 dB was reported in [12]. In a related 

publication, the authors - using the same optimization procedure - investigated the effects of 

conductor losses on the gain of the optimized non-uniform helical antenna [13]. In the main, 

the paper’s simulation results indicate that there is a range of conductivities over which the 

gain performance of the optimized non-uniform helical antenna is markedly superior to that 
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of the optimized uniform helical antenna of the same dimensions. Outside this range, the 

results also suggest that the difference in gain performance of the two is minimal, so that the 

optimized uniform is to be preferred, on account of simplicity in design and construction. A 

genetic algorithm (GA) based optimization approach reported by Lovestead and Safaai-Jazi 

focused on a non-uniform helix, for which antenna non-uniformity is defined by a 

continuous variation of pitch angle over the extent of the helix’s axial profile [14]. This non-

uniformity - derived from the GA procedure - required the prescription of antenna geometry 

that simultaneously satisfies the constraints of maximum gain and minimum axial ratio. 

Important outcomes of the investigations include the fact that the GA-optimized non-

uniform helical antenna’s directivity is some 0.6 dB better than that of the corresponding 

uniform helical antenna and that the GA-optimized antenna is limited in bandwidth and 

axial ratio on the lower and higher frequency sides, respectively. It may be of interest to 

mention that the use of the helical antenna’s non-uniformity towards the improvement of 

normal-mode operations has also attracted research attention in recent times. Examples 

include the contribution by Garakhili [15], in which two non-uniform (varying-pitch angle) 

normal-mode helical antennas were nested in the design of a dual-band radiating device, 

described as producing a ‘fractional bandwidth’ of 19.7%.  Mahmood and Al-Dalawie also 

reported the design, construction, and performance evaluation of a non-uniform normal-

mode helical antenna [16]. The antenna - designed with the use of an ‘online helical antenna 

calculator’ - recorded between 10-12 dB more in received power than the off-the-shelve 

antennas utilized for commercial broadcast TV reception in the UHF band.          

Although the analysis of a logarithmic spiral antenna was reported by Thaysen et al. 

[17], there is no record - to the best of our knowledge - of any analysis involving the helical 

antenna characterized by a non-uniformity defined by a logarithmic variation of its turns 

spacing along its axis. Consequently, the main objective of this paper is to investigate the 

response of the axial-mode circular helical antenna of logarithmically varying turns spacing. 

First, the paper resolves the non-trivial problem of providing an analytical description for the 

log-helix geometry and, then, following the use of the vector potential procedure, the 

radiation field integrals of thin-wire log-helix - in which the axial current distribution is the 

only unknown quantity - are formulated. Next, and because the ‘log-helix’ is mounted on a 

ground plane of infinite extent, the image theory is invoked and utilized in conjunction with 

the method of moments to determine the unknown current and facilitate the compilation of 

computational data concerning the antenna’s input characteristics and radiation-zone 

performance parameters.   

The computational results show that the axial-mode log-helix is capable of achieving a 

39% increase in gain over that of the corresponding uniformly wound helix and without loss 

of circular polarization properties. Also, for a particular choice of logarithmic variation factor 

denoted by , a 25% improvement is recorded for axial ratio whose bandwidth is shown by 

the computational results to increase by 10% for certain values of . 

2. PROBLEM FORMULATION 

The geometry problem of a thin-wire logarithmically-wound N-turn helix antenna 

characterized by a circular cross-section, mounted on a perfectly conducting ground plane of 
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infinite extent, is depicted in Fig. 1(a), while its image-theory-based equivalent is displayed 

in Fig. 1(b).    
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Fig. 1. a) A thin-wire log-helix mounted on a ground plane of infinite extent; b) an image-theory equivalent of the 
original geometry problem; c) a differential element of the log-helix rolled on a plane surface. 

 
Without much difficulty, an exact analytical description of the geometry in terms of a 

position vector symbolized by 𝑟̅´ and extending from the origin of the coordinate system to 

any point on the N-turn log-helical structure admits the form: 

ˆ ˆ ˆcos sin ln ,                                0 2N
x y z

N

r a a a a p a N   


 
        

  
                            (1) 

in which Φ𝑁 = 2𝜋𝑁𝛽 + 1, with ‘𝑎’ standing for radius of the circular cross-section, and the 

parameters p and β, geometrically defining the logarithmic variation of turns spacing, 

 𝑎̂𝑥 , 𝑎̂𝑦, 𝑎𝑛𝑑 𝑎̂𝑧 are the usual unit vectors along the Cartesian coordinate axes, whilst  ′ 

denotes the running angular variable along the log-helix structure.  The parameters ‘p’ and 

' '  appearing in Eq. (1) define the logarithmic variation of the antenna’s turns spacing, and 

may be regarded as design variables prescribed by the following considerations.  Now, for 

the uniformly wound helix, the variation along the z-axis is expressed as: 

 tan ,                                           0 2 Nz a                                                                          (2) 

where 𝛼 represents the pitch angle which remains constant throughout the extent of the 

uniform helix. In order to undertake a comparative performance analysis of the log-helix and 

the corresponding uniform helix, the practice in [1, 7] is followed to impose the design 

constraint of identical axial length for both helices. This constraint is met, in this case, when 

the parameter p featured in Eq. (1) is given by: 

 

 

2 tan
.           

ln 2 1

Na
p

N

 

 



                                                                                                               (3) 

It is clear from Eq. (3) that the parameter β essentially defines the antenna’s logarithmic 

variation and is consequently here referred to as the ‘logarithmic variation factor’. To specify 

this factor, it is noted that when a differential element of the log-helix is rolled on a plane 
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surface, the geometry described by the illustration of Fig. 1(c) emerges, and from which it is 

easy to see that the pitch angle 𝛼𝑖 of the log-helix is expressible as:  

1tani

dz

ad




  
  

 
                                                                                                                             (4) 

Since the z-component of a point on the log-helix is given by ln N

N

z p


 
   

  
, the 

pitch angle 𝛼𝑖 ultimately passes over to:   
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which is clearly a function of the running variable ′ with the direct physical implication that 

the pitch angle is continuously varying along the log-helical geometry. Thus, the log-helix 

belongs to the class of non-uniform helical antennas, for which both turns spacing and pitch 

angle vary along antenna axis. The starting pitch angle 𝛼𝑠 is deducible from Eq. (4a) by 

simply setting ′= 0, while the ending pitch angle 𝛼𝑒 is attained when 2 N   ;  thus 
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and  
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a
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                                                                                                                            (4c) 

Towards determining the arm length of the log-helix, the differential length dℓ′ of the 

helical configuration may be expressed using the following well-known formula [18]: 
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 
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,                                           (5) 

which, when integrated from 0 to 2𝜋𝑁 gives the total arm length L of the logarithmic helical 

antenna according to: 
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that is: 
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and using the position vector 𝑟̅´ of the log-helix as given in Eq. (1), it is a relatively simple 

matter to obtain the unit vector 𝑎̂ℓ´ along the helical arm length as: 
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With these results, it is now a straightforward matter to specify the vector magnetic 

potential 𝐴̅,  due to an axially-directed distribution of current 𝑎̂ℓ´𝐼(ℓ´) for the electrically thin-

wire log-helix antenna as given by: 
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where all symbols assume their usual definitions. Next, we invoke the conventional 

“magnitude and phase approximations” such that the quantity R appearing in the 

denominator of Eq. (7) is simply replaced by r the radial distance from the origin of spherical 

coordinate system to the field point, and the quantity R in the exponential term reduces to: 

𝑅 ≅ 𝑟 − 𝑎̂𝑟 ∙ 𝑟̅´         ,                                                                                                                      (8)   

so that 
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A substitution of Eqs. (5), (6) and (8a) in Eq. (7) readily provides the following integral 

expressions for the (𝐴𝑥 , 𝐴𝑦 𝑎𝑛𝑑 𝐴𝑧 ) Cartesian components of the vector potential 𝐴̅ : 
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In the far-zone of log-helix antenna, only two components of the electric field, 

namely 𝐸𝜃 𝑎𝑛𝑑 𝐸  are of practical interest,  and are computable from: 
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after the conversion of the rectangular components of 𝐴̅ to the spherical components by the 

use of the usual coordinate transformation equations: 
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The unknown distribution of current along the axis of the log-helix can now be 

determined using the method of moments in a manner comprehensively described in        

[19, 20], following which the antenna’s input and far-zone characteristics can be obtained. 

For computational purposes, the axial ratio (AR) and the power gain (Gp) along the helical 

axis (θ = 0º, ϕ = 0º) are determined from the respective standard antenna parameter 

expressions: 
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where δ denotes the time-phase difference between the field components  [21], and 
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                                                                                         (13) 

in which |𝐼𝑖𝑛| is the magnitude of antenna current at feed point, Rin stands for the 

corresponding input resistance of the antenna, and r is the radial distance from the 

coordinate origin to the far-field point [22].  

3. DISCUSSION OF THE COMPUTATIONAL RESULTS 

For the purposes of numerical computations, choice of antenna dimensions is informed 

by the fact - established by Kraus [23] - that for axial mode operations, normalized 

circumference (Cλ), pitch angle (α), and number of turns ‘N’ are respectively restricted 

according to 0.8 ≤ 𝐶𝜆 ≤ 1.2; 12° ≤ 𝛼 ≤ 14°; 𝑁 ≥ 4. Consequently, a log-helix derived from an 

8-turn uniform helix having a pitch angle of 13º and circumference of one wavelength (1λ) at 

a frequency of 2 GHz is selected as candidate example. The extent of departure from the 

uniform helix’s profile increases as β increases as shown in the z′ curves of Fig. 2. In 

particular, the curvature of the log plots increases as β increases with the physical 

consequence that the consecutive turns at the upper end flares out while the turns at the 

lower end are in close proximity to each other. As a matter of fact, when β = 0.1, the span of 

the antenna’s last two turns constitutes 45% of its total axial length, whereas the extent of the 

last two turns of the uniform helix take only 25% of the total axial length. On the other hand, 

the span of the first two turns of the log-helix accounts for 13% of the total axial length. This 

is unlike the case of the uniform helix, for which the corresponding span covers 25% of the 

entire axial length. At the lower value of β =  0.01, the first two turns take up 21% of the total 

axial length while the last two turns occupy 30% of the total volume associated with the log-

helix. A simple inference from these observations is that as β increases, the open end of log-

helix flares out whereas turns at the feed end are closer to each other. As a matter of fact, as 

the logarithmic variation factor increases, the antenna arm length gradually increases, so that 

keeping axial height constant results in the compression described in the foregoing. Further 

insight into the physical characteristics of log-helix is available from the profiles of Fig. 2(b), 

which describe how pitch angle varies with ′ for different values of β ranging from          

0.01 to 0.1.   
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Fig. 2. Log-helix antenna geometry: a) axial profiles for different values of β; b) distribution of pitch angle αi. 

 

It is evident from the pitch angle profiles that the pitch angle, in general, increases 

along the log-helix structure. At the feed-end (° = 0), the pitch angle decreases as β 

increases, and for all values of β, the pitch angle of the log-helix is lower than that of the 

uniform helix. Conversely, at the open-end (° = 2𝜋𝑁), the pitch angle takes higher values as 

β increases, and is greater than that of the uniform helix for β values of interest in this paper.  

These physical characteristics are consistent with the characterizing profiles of the z′ plots 

discussed earlier. It is worth remarking that the pitch angle profile of log-helix has a 

continuously changing positive slope along its structure, which is different from that for the 

non-uniform helix of linearly varying pitch angle characterized by constant slope along its 

configuration [11]. It is also to be noted that as   decreases, the profile approaches that of a 

uniform helix, and in the limit, as 0,   it is seen from Eqs. (3) and (4a) (through an 

application of L’Hospital rule) that the particular case of the uniform-spacing helix is 

obtained. When in addition ' '  is set to 0 and N=1, the geometry of a circular loop of radius 

‘a’ located on the X-Y plane is prescribed. 

3.1. Current Distributions 

In order to examine the influence of parameter β on the log-helix’s current 

distributions, current profiles for values of β ranging between 0.01 and 0.1 are superimposed 

on the same plots together with the current distribution on the corresponding uniform helix, 

when the circumference in wavelengths (Cλ) ranges between 0.8 and 1.3 at the operating 

frequency of 2 GHz. Fig. 3(a) displays the current distribution profiles for the log-helix and 

uniform helix antennas when Cλ varies from 0.8 to 0.95 and β lies between 0.01 and 0.1. For 

the case Cλ = 0.8, the current profiles consist of two distinct parts, namely exponentially 

decaying component existing approximately over seventy percent of the log-helix structure 

from the feed-end; and a surface wave component of extremely small magnitude, extending 

over the remaining thirty percent. With a slight increase of Cλ  to 0.85, the exponential 
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component of the current distribution becomes limited in extent (to the first three turns of 

the helix) while the surface wave segment extends over the last five turns, even though with 

some visible ripples due to reflections from the open end. It can be seen that for the cases    

Cλ = 0.90 and 0.95, the surface wave part of the current distribution - which has been 

established [3] as the main contributor to the radiation in the axial direction - is now well 

developed starting from the third turn of the helix to the end whilst the exponential 

component is restricted to the first two turns of the helix.  It is observed that the magnitude 

of current for the log-helix increases with Cλ as β increases, and is larger - in all cases - than 

that for corresponding uniform helix. 
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Fig. 3. Current distribution profiles along the log-helix and uniform helix for 0.80 ≤ Cλ ≤ 0.95: a) Cλ = 0.80;             

b) Cλ = 0.85; c) Cλ = 0.90; d) Cλ = 0.95. 

 

In the case of Fig. 4 - which displays the distributions of current when Cλ assumes 

values between 1.00 and 1.15 - it is seen that there are significant improvements in the 

surface wave components in terms of higher magnitudes, smoothness and extent over the 

antenna axis. The distinction between the surface wave components for different values of β 

is not readily apparent whereas the exponential wave parts are well defined for each value of 

β and extend between the feed-point and the first 1½ turns of the helix.  As earlier observed 

for Fig. 3, the current magnitudes for 0.9 ≤ Cλ ≤ 1.15 steadily increase as β increases, and for 

all the examined cases, the current magnitude of the uniform helix is smallest.   
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Fig. 4. Current distribution profiles of log-helix and uniform helix for 1.00 ≤ Cλ ≤ 1.15: a) Cλ = 1.00; b) Cλ = 1.05;    

c) Cλ = 1.10; d) Cλ = 1.15. 

 

The current distribution profiles for Cλ taking on the values of 1.20, 1.25 and 1.30 are 

displayed in Fig. 5. They clearly show that the transition between the exponential and 

surface wave regions of the current distribution is not as sharply defined as obtained with 

lower values of Cλ. It can also be seen from Fig. 5 that the ripples on the surface wave 

components are now increasingly more prominent as β increases. Furthermore, the 

magnitude of current at the feed-point has increased significantly and the exponential part of 

the current reaches its minimum value within the first two turns of the log-helix.   

For all the considered values of  , the magnitude of current for the uniform helix is 

lower than that of the log-helix. In order to examine the effects of turns proximity on the 

current behavior at the feed-point, the feed-point currents of uniform helix and log-helix as a 

function Cλ are plotted and discussed under the section on input characteristics of log-helix.  

Current distribution profiles corresponding to different fixed values of the logarithmic 

variation factor, β, are displayed in Fig. 6. The profiles show that as β increases, the starting 

point of the surface wave section moves towards the third turn of the log-helix, with 

corresponding increase in magnitude. It is also to be noted that the ripples in the surface 

wave region become markedly visible for values of Cλ greater than 1.00 as β assumes higher 

values. And that for all values of β, the transition from the exponential decaying part to the 

surface wave portion is sufficiently smooth for the two cases Cλ = 0.90 and 1.00; but not too 

distinct for Cλ = 1.20, 1.25 and 1.30.   
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Fig. 5. Axially-directed current distributions for the log- and uniform helix antennas for 1.20 ≤ Cλ ≤ 1.30:                

a) Cλ = 1.20; b) Cλ = 1.25; c) Cλ = 1.30. 
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Fig. 6. Current distributions along the axis of the log-helix for fixed values of β, as Cλ varies : a) β = 0.01;               

b) β = 0.03; c) β= 0.05; d) β = 0.10. 
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3.2. Radiation-Zone Electric Fields 

The illustrations of Figs. 7 to 14 describe the radiation-zone normalized electric field 

intensity patterns Eθ and E on the  = 0º plane, for the log-helix and corresponding uniform 

helix. Figs. 7 to 9 display Eθ patterns for each value of Cλ considered, with the logarithmic 

variation factor β ranging between 0.01 and 0.10.  For values of Cλ  lying between 0.80 and 

0.95, Fig. 7(a) shows that although the normalized radiated beam patterns are sharper with 

decreasing values of  , the corresponding minor lobes become significantly more 

pronounced so that the beam directivity (as shown by computational data) of E  patterns 

improves as β increases. It can also be seen that the pattern sidelobes are most prominent for 

the uniform helix. Furthermore, it is readily observed that the main beams of Eθ patterns are 

well-aligned along the helical axis and fully symmetrical about the axis of the helical 

structure. In all situations, there is null radiation in the lower space of the antenna 

configuration as a consequence of the infinite size of the supporting ground plane. 

Patterns in Fig. 8 are for the cases of Cλ values from 1.00 to 1.15, and reveal that the 

main beams of the Eθ patterns are essentially identical without significant sidelobes for all 

values of β considered. However, the Eθ patterns of the uniform helix are typified by sizeable 

sidelobes when compared with the corresponding sidelobes for the log-helix antenna 

patterns. Furthermore, the patterns become more directive as Cλ increases with associated 

reduction in the half-power beamwidth of the major lobes. This is evident from the 

numerical values of power gain - displayed in Table 1 - for different values of Cλ and β. It is 

also to be observed from Fig. 8 that the symmetry of the main lobes about the helical axis is 

preserved, while the development of the sidelobes as Cλ increases is very moderate. For Cλ 

that equals 1.15 and β = 0.1, the sidelobes have been fully developed, though less than 20% of 

the main lobe level.  
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Fig. 7. 𝐸𝜗(𝜗, 0°) components of the normalized radiated electric fields of the log-helix and uniform helix for      

0.80 ≤ Cλ ≤ 0.95: a) Cλ = 0.80; b) Cλ = 0.85; c) Cλ = 0.90; d) Cλ = 0.95. 
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Fig. 8. 𝐸𝜗(𝜗, 0°) components of the normalized radiated electric fields of the log-helix and uniform helix for      

1.00 ≤ Cλ ≤  1.15: a) Cλ = 1.00; b) Cλ = 1.05; c) Cλ = 1.10; d) Cλ = 1.15. 

 

Table 1. Variation of power gain with normalized circumference for different values of β. 

Power gain [dB] 

Cλ Uniform β =0.01 β = 0.03 β=0.05 β=0.1 

0.80 4.288 4.749 5.08 5.141 4.929 

0.85 5.438 6.108 6.736 7.043 7.395 

0.90 6.434 7.235 8.016 8.425 8.953 

0.95 7.408 8.275 9.124 9.574 10.166 

1.00 8.354 9.281 10.16 10.614 11.203 

1.05 9.182 10.165 11.076 11.531 12.091 

1.10 9.964 10.935 11.825 12.259 12.768 

1.15 10.781 11.742 12.539 12.888 13.252 

1.20 11.235 12.298 13.097 13.378 13.55 

1.25 11.25 12.294 13.054 13.258 13.218 

1.30 11.377 12.373 12.866 12.827 12.305 

 

Again, as a consequence of the infinite extent of the ground plane featuring in the 

feeding arrangement, there is null radiation into the lower space (z < 0) of the antenna 

system. The corresponding Eθ patterns for Cλ equals 1.20, 1.25 and 1.30 and the selected 

values of β from 0.01 to 0.10 are depicted in Fig. 9. Though the directivity of the main beams 

has been enhanced considerably at high values of Cλ, the formation and levels of the 

undesirable sidelobes of the patterns are now significant. As remarked for previous cases, 

the Eθ patterns of log-helix are better than those of the uniform helix. For all the values of β 

considered, the main lobes of the Eθ patterns remain essentially the same irrespective of the 
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values of Cλ. In sum, Figs. 7 to 9 have clearly shown that the log-helix radiates satisfactorily 

in the axial-mode when moderate values are prescribed for the parameter β. Further insights 

into the axial-mode radiation performance of the log-helix using antenna metrics such as 

axial ratio and power gain will be presented in another section. 
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Fig. 9. 𝐸𝜗(𝜗, 0°) components of the normalized radiated electric fields of the log-helix and uniform helix for      

1.20 ≤ Cλ ≤  1.30: a) Cλ = 1.20; b) Cλ = 1.25; c) Cλ = 1.30. 

 

Fig. 10 displays the Eθ patterns of the log-helix when β is fixed and the helix 

circumference in wavelengths (Cλ) is varied from 0.80 to 1.30. It is noted that regardless of 

the values of β and Cλ, the log-helix radiates maximally in the axial direction with some 

associated minor lobes off the helix axis. As expected, the Eθ patterns for Cλ = 1.30 are the 

most directive but characterized by significant sidelobes. The radiation performance of the 

log-helix appears to be most attractive at Cλ = 1.00, which may be classified as the optimum 

log-helix electrical circumference, synonymous with the well-established value for the 

uniform helix. 

The normalized E patterns of the log-helix as well as those of the corresponding 

uniform helix on the  = 0º plane are plotted and presented in Figs. 11 to 13 when Cλ varies 

from 0.80 to 1.30 and β assumes values between 0.01 and 0.10.  From the aforementioned 

figures, it is evident that the main lobes of the E patterns are symmetrical about the helix 

axis and become more directive as Cλ attains higher values. As usual, the enhancement in the 

main lobes is traded off by the increase in the sidelobe size and the level of the E patterns, 

especially when Cλ is greater than 1.15. In all scenarios here, the log-helix antenna is 

characterized by better E patterns in comparison with those of the uniform helix. As 

highlighted for the Eθ patterns, there is zero radiation in the lower space (z < 0) of the 

antenna configuration as a result of the infinite extent of the ground plane counterpoise 
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deployed in the antenna feeding scheme. Perhaps, the enhanced sidelobes of the E patterns 

when Cλ is greater than 1.15 may be attributed to the strong reflections of the current from 

the open end of the log-helix as underscored by noticeable ripples on the associated current 

waveforms. 
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Fig. 10. Profiles, for various values of Cλ, of 𝐸𝜗(𝜗, 0°) components of the normalized radiated electric fields of the 

log-helix and uniform helix for fixed values of β: a) β = 0.01; b) β = 0.03; c) β= 0.05; d) β = 0.10. 
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Fig. 11. 𝐸𝜙(𝜗, 0°) components of the normalized radiated electric fields of the log-helix and uniform helix for    

0.80 ≤ Cλ ≤  0.95: a) Cλ = 0.80; b) Cλ = 0.85; c) Cλ = 0.90; d) Cλ = 0.95. 
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Fig. 12. 𝐸𝜙(𝜗, 0°) components of the normalized radiated electric fields of the log-helix and uniform helix for    

1.00 ≤ Cλ ≤  1.15: a) Cλ = 1.00; b) Cλ = 1.05; c) Cλ = 1.10; d) Cλ = 1.15. 
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Fig. 13. 𝐸𝜙(𝜗, 0°) components of the normalized radiated electric fields of the log-helix and uniform helix for     

1.20 ≤ Cλ ≤  1.30: a) Cλ = 1.20; b) Cλ = 1.25; c) Cλ = 1.30. 
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Finally, the E patterns when β is fixed and Cλ is allowed to assume different values are 

portrayed in Fig. 14. It is apparent that for each value of β, the directivity of the E patterns 

increases as Cλ increases, but with corresponding increase in the sidelobe levels. A careful 

inspection of the E patterns shows that for β = 0.05, the E patterns for all Cλ considered are 

the most attractive. It is also observed that the symmetry of the E patterns about the helix 

axis is maintained in all cases of interest here. 
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Fig. 14. Profiles, for various values of Cλ, of normalized 𝐸𝜙(𝜗, 0°) components of the radiated electric fields of the 

log-helix and uniform helix for fixed values of β: a) β = 0.01; b) β = 0.03; c) β= 0.05; d) β = 0.10. 

3.3. Input Characteristics: Feed-Point Current and Input Impedance 

Towards further elucidation of the influence of logarithmic profile of the log-helix 

structure on its input characteristics, features of computational results for the magnitude of 

current at feed-point and the input impedance for various values of parameter β and helix 

circumference in wavelengths (Cλ) are displayed in Fig. 15. Profiles – exhibited in Fig. 15(a) - 

describe the variations of the magnitude of current at feed-point for specific values of β when 

Cλ lies in the range from 0.8 to 1.3 for the log-helix, as well as for the uniform helix for ease of 

comparison.  It is evident from the profiles that for all values of β (0.01 – 0.10), feed-point 

current of the log-helix is of higher magnitude compared to that of the uniform helix, and 

there is progressive increase in the feed-point current as β increases. The profiles of feed-

point current versus Cλ appear somewhat linear until Cλ is greater than 1.2, and a percentage 

increase of more than 50% is observed in the feed-point current magnitude when β changes 

from 0.01 to 0.10. It may, therefore, be inferred that the log-helix draws more current than the 

uniform helix from an identical feeding system. 
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(c)

Fig. 15. Log-helix input characteristics: a) feed-point for 0.01  β  0.1; b) profiles of input resistance Rin for        

0.01  β  0.1; c) input reactance (Xin) profiles for 0.01  β  0.1. 

 

The resistive part of the input impedance is illustrated in Fig. 15(b) for the values of β 

and Cλ of interest in this paper. The profiles show that the input resistance (Rin) at the feed 

point decreases as Cλ increases. For the different values of β and Cλ  utilized, Rin for the 

uniform helix is greater than corresponding values for the log-helix. Remarkably, the input 

resistance of the log-helix varies reasonably between 20 Ω and 60 Ω, slopes downwards 

gradually as Cλ increases for all values of β. 

Fig. 15(c) depicts the input reactance (Xin) of the log-helix as well as that of the uniform 

helix for values of β and Cλ considered in this paper. The input reactance is entirely 

capacitive as a result of the analytical model adopted for the feeding scheme. The Xin of the 

uniform helix assumes higher values vis-a-vis those of the log-helix, which lie between - 40 Ω 

and - 65 Ω. A merit of the moderate variation of the input reactance is the ease of designing a 

matching network since the reactance of the log-helix decreases as Cλ increases irrespective 

of the value of β. 

3.4. Far-Zone Characteristics: Axial Ratio and Power Gain 

The axial ratio (AR) profiles, due to computational results compiled with Eq. (12), and 

presented in Fig. 16(a) clearly show that the AR is essentially less than 3 dB for all values of β 

and Cλ considered in this paper. Thus, on the basis of usual 3 dB axial ratio criterion, the log-

helix antenna radiates electromagnetic fields, characterized by acceptable degrees of circular 
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polarization, and may be classified as a circularly polarized antenna. It should be remarked 

that when Cλ lies between 0.90 and 1.10, the log-helix of β, equal to 0.01 has better AR than 

other log-helix antennas whose β is greater than 0.01. Specifically, Table 2 displays the values 

of axial ratio for different values of Cλ and β. 
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(a)  
Fig. 16. Axial ratio and power gain performance: a) axial ratio for 0.01  β  0.1; b) profiles of power gain for       

0.01  β  0.1. 

 
Table 2: Axial ratio with normalized circumference for different values of β. 

Axial Ratio [dB] 

Cλ Uniform β =0.01 β = 0.03 β=0.05 β=0.1 

0.80 4.03 3.445 2.898 2.654 2.562 

0.85 2.784 2.408 2.126 2.068 2.186 

0.90 1.385 1.27 1.366 1.545 1.922 

0.95 0.772 0.942 1.253 1.482 1.851 

1.00 1.044 1.284 1.592 1.778 2.02 

1.05 1.138 1.329 1.61 1.791 2.03 

1.10 1.856 1.768 1.76 1.803 1.912 

1.15 2.636 2.431 2.245 2.165 2.13 

1.20 2.654 2.461 2.303 2.257 2.337 

1.25 2.813 2.477 2.251 2.239 2.512 

1.30 3.665 3.095 2.769 2.808 3.281 

 

 

One important conclusion arising from Table 2 and Fig. 16(a) is that for                    

0.9 ≤ 𝐶𝜆 ≤ 1.1, axial ratio improves with decreasing values of  . On the other hand, axial 

ratio bandwidth actually increases with increasing values of   for the 8-turn configuration 

under discussion. 
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Fig. 16(b) displays the plots of the power gain against Cλ for various values of β in 

addition to the plot for the uniform helix. It is seen from the power gain behaviors that 

regardless of the values of β and Cλ, the log-helix outperforms the uniform helix.  And the 

power gain of the log-helix increases somewhat linearly as Cλ increases and as β also 

increases. It may be deduced that the log-helix has better directivity than the uniform helix.  

Values of power gain for different values of Cλ and β, listed in Table 1, show that with the 

exceptions of 𝐶𝜆 = 0.80;  0.85 𝑎𝑛𝑑 1.25, the power gain generally increases with  . For these 

three cases, the values of gain for 0.10   are lower than for 0.05  . This shows that for 

these cases, gain peaks at a lower frequency for 0.10   than for 0.05  .     

4. A COMPARATIVE PERFORMANCE EVALUATION  

The performance evaluation, described in this section, compares the log-helix as 

prescribed by:  

 ln N

N

z p


 
  

  
,                                                                                                                 (14a) 

and the exponential helix, with axial profile characterized by [7]: 

 1Cz S e
 

  
 

.                                                                                                                   (14b) 

For the particular case of C = 12, S = (17.6), p = {56}, and  𝛽 = 1/3  concerning the         

4-turn helical antenna treated in [7], the axial profiles of the exponential-spacing and 

logarithmic-spacing helices are almost identical; though their corresponding pitch angle 

profiles differ significantly for values of   greater than 700º, as can be seen from Figs. 17(a) 

and 17(b). For computational purposes, the finite ground plane is modeled by a wire-grid in 

the manner described in [2]. The profiles of Figs. 17(c) and 17(d) compare axial ratio and 

power gain variations with frequency, respectively. It is readily observed from Fig. 17(c) that 

whereas axial ratio values for the two helical antennas are generally comparable, the axial 

ratio bandwidth for the log-helix (80.7%) is greater than that for the exponential helix 

(77.18%), in this representative case. It may be remarked that this trend features for all values 

of C and  , and for 
1

𝐶
= 0.05. Indeed, computational results reveal that when 

1

𝐶
= 0.10 the 

exponential helix, (unlike the log-helix for which 0.10  ) loses its axial-mode property. 

The power gain variations with frequency for the particular case under discussion are 

displayed in Fig. 17(d). These profiles reveal that whereas power gains for the two non-

uniform helical antenna types are - in general - comparable, values recorded by the 

exponential-helix are - in general - higher than those for the log-helix. Nonetheless, peak 

power gain for the log helix (12.93 dBi at about 1.9 GHz) is higher than that for the 

exponential helix, which is 12.89 dBi at 2 GHz.    
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Fig. 17. Performance comparison of logarithmically-spaced and exponentially-spaced 4-turn non-uniform helical 

antennas: a) axial geometry profiles; b) pitch angle profiles; c) axial-ratio profiles; d) power-gain profiles.  

5. CONCLUSIONS 

This paper has systematically investigated the characterizing features of a new variant 

of non-uniform helix antenna designated here as log-helix, and for which the non-uniformity 

is defined by a logarithmic variation along its axial length.  Computational results suggest 

that when the logarithmic variation factor, β, assumes moderate values in the range 0.01 to 

0.10, the log-helix radiates satisfactorily in the axial direction with better power gain in 

comparison with the conventional uniform helix. An exact equation describing the log-helix 

geometry facilitated the formulation of radiation integrals for the log-helix via the vector 

potential method. The distribution of current along the radiating structure when excited by a 

coaxial cable in conjunction with a ground plane of infinite extent is determined using the 

versatile method of moments together with the image theory.   

A number of interesting outcomes were recorded for the 8-turn helix mounted on a 

ground plane of infinite extent, and utilized as the paper’s candidate for use with 

investigations. Computational results for normalized 𝐸𝜗(𝜗, 0°) components of the radiation 

field patterns indicate that for given values of Cλ (or frequency) the main beam, in general, 

increases as  increases, though corresponding minor lobe levels become more prominent 

with decreasing values of logarithmic variation factor,  . On the other hand, the results 

reveal that for given values of the logarithmic variation factor, main beam becomes sharper 

with increasing frequency, as do the minor lobe levels. In the case of the normalized 
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𝐸𝜙(𝜗, 0°) radiation-zone field patterns, the observed trend is that for given values of Cλ up to 

1.10, main beam width sharpens with increasing values of  , and the associated minor lobes 

become less prominent. For values of 1.15 ≤ 𝐶𝜆 = 1.30, the trend is similar to that described 

earlier for the corresponding Eϑ.  Also, the normalized patterns for fixed values of  , exhibit 

the same characteristic behavior as described for the corresponding theta-components.   

The performance of the log-helix was compared with that of a 4-turn exponential-helix, 

whose physical and operational parameters are specified in [7]. For the purposes of 

computational data, the finite ground plane in both cases was modeled by a wire grid, and 

the variation factors  ,C  were so selected as to make the axial profiles of both antennas as 

close as possible. The obtained computational results suggest that whereas the exponential 

helix, in general, has a better power gain performance than the log-helix, the latter’s peak 

power gain is higher. On the other hand, and according to the computational results, the log-

helix has a better axial ratio bandwidth performance than the exponential helix. It is worth 

remarking that the results reported in [1] and [10] indicated that when antenna non-

uniformity is defined through diameter variation (rather than turns-spacing variation), the 

exponential helix has better power gain and axial ratio bandwidth performances. It should 

also be noted in that connection, that the profile of the logarithmic variation in [1] and [10] is 

a mirror reflection of that of the exponential helix. 

One important conclusion from the comparative performance evaluation carried out in 

this paper is that for the log-helix, axial-ratio bandwidth is significantly enhanced, when the 

antenna’s ground plane is of finite extent.  
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